
Seyyed Hadi Seifi
Department of Industrial and Systems Engineering,

Mississippi State University,
Starkville, MS 39762

e-mail: ss4350@msstate.edu

Wenmeng Tian
Department of Industrial and Systems Engineering,

Mississippi State University,
Starkville, MS 39762

e-mail: tian@ise.msstate.edu

Haley Doude
Center for Advanced Vehicular Systems,

Mississippi State University,
Starkville, MS 39762

e-mail: haley@cavs.msstate.edu

Mark A. Tschopp
Fellow ASME

Army Research Laboratory,
Chicago, IL 60615

e-mail: mark.a.tschopp.civ@mail.mil

Linkan Bian1

Department of Industrial and Systems Engineering,
Center for Advanced Vehicular Systems,

Mississippi State University,
Starkville, MS 39762

e-mail: bian@ise.msstate.edu

Layer-Wise Modeling and
Anomaly Detection for Laser-
Based Additive Manufacturing
Additive manufacturing (AM) is a novel fabrication technique capable of producing highly
complex parts. Nevertheless, a major challenge is the quality assurance of the AM fabricated
parts. While there are several ways of approaching this problem, how to develop informa-
tive process signatures to detect part anomalies for quality control is still an open question.
The objective of this study is to build a new layer-wise process signature model to charac-
terize the thermal-defect relationship. Based on melt pool images, we propose novel layer-
wise key process signatures, which are calculated using multilinear principal component
analysis (MPCA) and are directly correlated with the layer-wise quality of the part. The
resultant layer-wise quality features can be used to predict the overall defect distribution
of a fabricated layer during the build. The proposed model is validated through a case
study based on a direct laser deposition experiment, where the layer-wise quality of the
part is predicted on the fly. The accuracy of prediction is calculated using three measures
(i.e., recall, precision, and F-score), showing reasonable success of the proposed method-
ology in predicting layer-wise quality. The proposed quality prediction methodology
enables online process correction to eliminate anomalies and to ultimately improve the
quality of the fabricated parts. [DOI: 10.1115/1.4043898]

1 Introduction
Additive manufacturing (AM) techniques fabricate parts with

complex shapes in a layer-by-layer manner, significantly reducing
material waste and enabling new design options that are not feasible
with conventional manufacturing technologies [1]. However, a
major barrier that prevents broader industrial adoption of AM is
that the quality of manufactured parts usually does not meet the
stringent requirements of industrial application due to the existence
of defects (e.g., porosity, cracks, and lack of fusion). There is an
urgent need to develop layer-based quality measures for deposited
layers so that correction actions can be taken to improve part
quality during the fabrication [2,3]. Establishing an accurate
process–defect relationship of the metal additive manufacturing
through new layer-based process signatures can provide great
value toward improving the part quality.
The challenges associated with the development of in situ layer-

wise process signatures are twofold. First, there exists tremendous
uncertainty in the underlying thermomechanical process of the
metal printing associated with powder properties and process
parameters. The existing finite element methods (FEMs) have
been used to model the correlation between thermal history and
microstructure properties. Temperature distribution and thermal
behavior are the key properties for studying the thermomechanical
process, affecting the residual stress, formation, and hardness as
well as phase transformation during the AM process, which have
been studied thoroughly by multiple research groups [4–7]. More-
over, the input parameters of an AM process influence the
thermal history as well as mechanical properties significantly

[8,9]. However, these FEM approaches are (1) dependent on part
geometry, (2) time consuming, (3) nonrobust to process uncertainty
(deterministic nature), and (4) computationally expensive.
Another group ofmethods uses advanced sensing technologies for

in situ thermal monitoring. The resulting sensing data are high
dimensional and have a low signal-to-noise ratio. Existing data-
driven methods focus on statistical approaches to detect anomalies
using observed thermal images [10–12]. Most of the existing
works use local features for quality prediction purposes, and they
cannot be directly utilized to characterize the profile of an entire
deposited layer for multiple reasons, namely, (1) propagation of
error, (2) negligence of between-layer variation, and (3) negligence
of mushroom effect, which are discussed in detail in later sections.
Hence, layer-wise modeling has attracted the attention of the AM
community [2,3]. Layer-wise spatial porosity evolution has been
modeled by Liu et al. based on X-ray computed tomography
(XCT), which is a highly time consuming, expensive, and off-line
characterization technique and, thus, very difficult to be used for in
situ process monitoring [13].
In this work, we propose a data-driven methodology to extract

thermal-based process signatures, which are directly correlated to
the quality of the deposited layers. This represents a fundamental
shift in the paradigm, from modeling and monitoring based on indi-
vidual melt pools to layer-based modeling. To address the issue of
high dimensionality of thermal history images, we propose to
develop a tensor-based modeling approach to characterize the
highly dynamic thermal–physical AM process captured by
the pyrometer camera during the build. Figure 1(a) illustrates the
initial structure and temporal trend of the captured images within
the layer, and Fig. 1(b) demonstrates the tensor structures of the pre-
viously captured temporal data (see Secs. 3.1 and 3.2 for details). A
central premise of the proposed methodology is that a consistent
thermal history tends to lead to a homogenous microstructure of the
deposited layers, resulting inmore consistent part quality. To charac-
terize the variability exhibited in the thermal history, multilinear
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principal component analysis (MPCA) is utilized to extract the spa-
tiotemporal variationpattern of thermal images as a tensor. Projecting
the tensor data into a lower dimensional space leads to the core tensor
shown in Fig. 1(c), in which critical information is condensed as
principal components (PCs) (see Sec. 3.3 for details).
We propose a novel, layer-wise quality signature using the

volume of convex hull formed by the multilinear principal compo-
nents of all individual melt pools from the same layer fabrication.
Figure 1(d ) illustrates the geometric-based feature (convex hull)
calculated by means of the PCs chosen from the low-dimensional
tensor to predict the layer-wise quality (see Sec. 3.4 for details).
We examine the uniqueness and sensitivity properties of the pro-
posed layer-wise quality index and prove that it is a more suitable
index (compared to symmetric shapes) to characterize the layer-
wise melt pool consistency. The proposed methodology is validated
using a real-world direct laser deposition (DLD) experiment. The
predicted layer quality is compared to the outcome of the XCT char-
acterization, which is regarded as the ground truth. This proposed
new quality index provides the theoretical foundation for online
process control/correction for the laser-based additive manufactur-
ing process by accurately predicting the overall quality of deposited
layers.
The remainder of the paper is organized as follows. Section 2

reviews the background studies in the literature; Sec. 3 provides
the mathematical modeling of the proposed methodology; Sec. 4
discusses the case study used to validate the proposed methodology;
Sec. 5 provides concluding remarks and the direction of possible
future work; and Sec. 6 provides practical guidance for the practi-
tioners for layer-wise quality prediction.

2 Literature Review
2.1 Defect Identification and Characterization of AM

Parts. One major barrier in the broader industrial adoption of
AM processes is their lack of robustness, stability, and repeatability
caused by defects within the manufactured part, such as porosity,
residual stress, minicracks, delamination, etc. [1]. According to
Sharratt [14], causes of defects and anomalies can be grouped
into three categories: (1) equipment-induced defects caused by
improper performance, setting, and calibration of the main system

components, (2) process-induced defects caused by process input
parameters and previously melted materials, and (3) model-induced
defects caused by choices implemented during the AM build design
stage. All those sources directly influence the thermal distribution
during the build, causing possible formation of defects within the
AM parts. Therefore, the thermal history of AM processes contains
critical information for AM part defect detection. Many researchers
have studied the methods to identify part defects and deformations.
For example, defects such as material cross-contamination (caused
by the presence of foreign materials in powder), lack of fusion
porosity, balling, and cracking have been investigated in laser
powder bed fusion (LPBF) processes [15–18]. Moreover, part dis-
tortion and deformation is another major type of defect that has
been extensively studied in different AM processes such as
extrusion-based AM process, direct energy deposition, and fused
filament fabrication [19–22]. In addition, process optimization
helps minimizing the defects and thus improve the AM process
output. Part build orientation, process parameters, and process con-
dition optimization are thoroughly studied to minimize geometric
deviations and improve AM fabrication quality [23–26].
Traditional defect characterization techniques have been used

to pinpoint the defects within the AM parts. For example, postma-
nufacturing characterization techniques, such as XCT scanning and
ultrasonic testing, have been extensively used to detect internal
defects. Ultrasonic approaches have been primarily used to
analyze the internal structure of parts in order to detect the
defects such as pores, voids, cracks, and delamination [27,28].
For example, Cai et al. [29] proposed to use the nondestructive
XCT technology to study the internal structure in order to character-
ize the relationship between process parameters and material poros-
ity in a selective laser melting (SLM) process. They used an
efficient image processing tool, which involved image enhancement
and ring artifact removal before image segmentation. In another
study, Liu et al. [13] proposed to model the spatial distribution of
pores and their evolution inside a layer based on XCT scan data.
This approach identifies the pore-prone areas in an AM part,
which provides information on location and severity of the pores
in different layers.
Although postmanufacturing characterization approaches pro-

vide valuable information on the internal structure of AM parts,

Fig. 1 Illustration of the four main steps toward achieving the key signatures: (a) initial layer-
based thermal images, (b) tensor structure of the layer, (c) extracted principal components,
and (d ) layer-wise process signature
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they are subject to the following limitations. Postmanufacturing
characterization techniques, such as XCT scanning systems, are
usually time consuming to implement. In addition, the accuracy
of the ultrasonic approaches highly depends on the number of
layers selected for inspection. Moreover, these approaches cannot
serve for real-time modeling or monitoring for AM processes and,
thus, cannot leverage the layer-by-layer nature of AM parts for in
situ quality improvement purposes.

2.2 Process Modeling and Anomaly Detection. In this
section, we focus on the literature pertaining to DLD and SLM
processes, which are the two most common metal printing
methods. DLD uses a powerful source of energy (i.e., a laser
beam) to melt feedstock material (powder or wire) into a substrate
to fabricate the design [30]. On the other hand, SLM consists of
layers of powder spread on a platform, where powders in each
layer are selectively fused together with a laser beam [31]. The
main difference between DLD and SLM is that there is no powder
bed in DLD processes, and the feedstock material is delivered simul-
taneouslywith the focused laser energy. For bothDLDandSLMpro-
cesses, the laser is the major energy source which dominates the part
fabrication process. Thus, the thermal response as a function of time
[32], i.e., the thermal history, is a salient process signature which
carries important information about the microstructure of the as
built part. Our method is based on the observed thermal history,
and it can be potentially applied to both SLM and DLD processes.
Current studies on thermal history modeling and monitoring for

AM processes can be categorized into two groups: finite element
analysis methods and data-driven methods.

2.2.1 Finite Element Analysis Models. Many studies have been
carried out using FEMs to model the thermal history. To name a
few, Matsumoto et al. [4] proposed a method to simulate the fabri-
cation process of a single layer using the SLM process. Kolossov
et al. [5] modeled the temperature evolution and the formation of
the sintered part using a three-dimensional FEM in a selective
laser sintering process. A three-dimensional thermokinetic model
was investigated by Crespo et al. [6], which is capable of simulating
temperature field evolution and solid-state phase distribution during
the laser powder deposition (LPD) of titanium. Martukanitz et al.
[7] investigated a hybrid FEM (inactive/quiet element activation)
to characterize the development and evolution of the microstructure
during AM processes. Costa et al. [33] developed a three-
dimensional thermokinetic FEM to simulate the changes of the
phase transformation and properties during an LPD process.
Costa et al. [34] developed a thermokinetic FEM for a multilayer
LPD process. This model couples a finite element heat transfer
model with a phase transformation kinetic data as well as a semi-
empirical microstructure–property relationship model to finally cal-
culate the hardness distribution of the part. Additionally, handful of
recent studies has focused on thermal evolution modeling based on
FEMs for thermal history prediction [35–44]. Defect prediction and
thermal modeling can be done by macroscale and mesoscale FEMs.
For example, porosity and lack of fusion defects have been investi-
gated using finite element and numerical modeling [45–47]. More-
over, many studies have focused on thermal evolution and its effect
on microstructural properties [48–50].
Although FEMs have been extensively used in modeling AM pro-

cesses, they have some major limitations. First, the deterministic
nature of FEM makes it difficult to take process uncertainty into
account. Additionally, FEMs are usually computationally expen-
sive, making them impractical for in situ quality control applications
and unsuitable for industrial applications of quality/control. In addi-
tion, FEMs are highly dependent on part geometry, making them
very difficult to be generalized to different geometries. Furthermore,
model calibration and validation of FEMs requires additional data
from real-world predictions. In summary, it is cumbersome to imple-
ment FEM approaches for real-time process monitoring/control and
using data-driven methods relying on in situ sensing technology cur-
rently represents the most viable solution.

2.2.2 Data-Driven Approaches. The advanced sensing tech-
nologies have enabled in situ process monitoring based on
thermal history collected using either pyrometers or infrared
cameras. For data-driven approaches, the thermomechanical rela-
tionship is characterized using the statistical correlation between
real-time sensing data and postprocessing microstructural proper-
ties. The thermal history of an AM fabrication is composed of a
series of high-resolution thermal images which may be subject to
low signal-to-noise ratio. Therefore, current data-driven approaches
usually involve two steps: (1) dimension reduction (i.e., feature
extraction) and (2) defect detection based on supervised or unsuper-
vised learning algorithms.
In thermal images, melt pool represents the region of superheated

molten metal in proximity to the laser–material interface, which
contains critical information for process condition [32]. Melt pool
morphological features, such as its depth, size, and temperature dis-
tribution, are used for process monitoring and anomaly detection
[32,51]. For example, an anomaly detection approach was devel-
oped by Clijsters et al. [52] for the SLM process based on melt
pool features captured by a co-axial pyrometer sensing system.
Structural anomalies such as porosity can be directly linked to the
process signatures extracted from the melt pool. A predictive
control model was incorporated by Song and Mazumder [53] to
control the melt pool temperature for a high-power diode laser clad-
ding process. The authors used a double-color pyrometer camera for
melt pool thermal monitoring. Subsequently, they proposed a state-
space method to model the dynamics between the laser power and
melt pool temperature for real-time closed-loop control. Moreover,
Lane et al. [54] proposed to monitor the melt pool region using high
speed thermographic measurements for a LPBF process. The area
enclosed by the melt pool isotherms (contours) varies based on
the location of the build stripes. Additionally, melt pool depth is
directly correlated with deposited layer thickness, microstructure
evolution, and pore formation. Having a high layer thickness may
cause lack of fusion defects among consecutive layers or adjacent
tracks which has been extensively studied [55–57].
Melt pool contours (i.e., the boundary of melting temperature of

the fabricated material) have been recently investigated for anomaly
detection in a DLD process [58,59]. Their proposed model does not
depend on part geometry, and it can be easily generalized to differ-
ent material properties as long as thermal history and defect infor-
mation (for example, porosity) are available. Kanko et al. [60]
proposed an in situ defect detection based on morphology measure-
ments obtained from longitudinal sweeping of the imaging beam
alongside the length of melt pool in an SLM process. Grasso
et al. [10] proposed a model to detect and identify the anomalies
in an SLM process by using a machine vision system in the
visible range. They aimed to find the melt pools with different
behaviors in terms of pixel intensity patterns over time. They
used vectorized principal component analysis (PCA) to process
the image data in order to apply a spatial version of Hotelling’s
T2 statistics. Finally, a k-means clustering model is trained to
detect and locate the anomalies during the layer-by-layer SLM
process. In a subsequent study, the authors investigated statistical
monitoring for different materials [11]. Krauss et al. [61] proposed
a methodology to monitor the temperature distribution of a single
layer alongside its evolution during the build using an off-axial ther-
mography system. Their proposed methodology was able to detect
anomalies such as process errors, pores, and other irregularities
based on thermal distribution during an SLM process. Khanzadeh
et al. [12] proposed a porosity prediction method based on the tem-
perature distribution observed from the top of the melt pool. They
used a self-organizing map method to analyze the melt pool images
for anomaly detection.
The existing studies for porosity prediction use individual melt

pools combined with clustering, classification, or control chart
methods to detect anomalies [1,10,12,58]. Directly applying the
existing methods to layer-wise quality prediction can lead to multi-
ple drawbacks. If each melt pool has a potential misclassification
probability of α, the misclassification probability of each layer
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with m melt pools is 1− (1− α)m. If α= 0.01, the misclassification
probability of an arbitrary layer with 30 melt pools is 0.26 which is a
very high error rate. This is similar with the idea of the multiple
testing problem in statistical inference. Our method aims to
resolve this issue while it extracts holistic features from layer-wise
data for the quality prediction purposes.
The main contribution of the layer-wise study is quantifying the

variability between multiple melt pools within a layer. By looking at
the profile of the melt pools within the layer, we can obtain a holistic
view about the variability. This means that our method can distin-
guish various types of defects (e.g., lack of fusion, entrapped gas,
overheating, etc.) and capture different melt pool behaviors. As
illustrated in Fig. 2, change in melt pool features leads to change
in the convex hull boundary, which indicates a different thermal
behavior.
In addition, layer-wise profiles can account for the shift in tem-

perature distribution over layers due to the mushroom effect. The
mushroom effect is a phenomenon that top layers tend to have
wider shape compared to lower ones. This effect is a result of
more hydrophilic melt pools due to bulk heating of the parts [32].
The shift in temperature results in improper comparison between
melt pools of lower layers and upper layers. However, shift in tem-
perature over layers changes the location of the convex hull, not the
volume. Overall, volume of the convex hull is robust to the mush-
room effect. Therefore, all the above-mentioned studies focus on
process monitoring and anomaly detection based on individual
thermal images, and thus, they are not capable of characterizing
layer-wise process condition and part quality.

3 Methodology
3.1 Data Description and Challenges. The thermal history is

usually captured as a discrete series of melt pool images by a
pyrometer camera. When analyzing layer-wise thermal history,

there are four major challenges: (1) high data dimensionality due
to high sensor resolution, (2) corrupted images with no melt pool
captured, (3) missing data in some pixels in the melt pool images
(with unrealistic zero temperature), and (4) discrete image sam-
pling, which leads to limited number of melt pool observations
due to sensor sampling frequency. Examples of corrupted images
and melt pool images with missing data are illustrated in Fig. 3.
Moreover, due to the varying number of corrupted images within
each layer, there is a significant variability in the number of melt
pools observed within each layer. An example of an observed
melt pool number distribution across all layers for a thin wall is
illustrated in Fig. 4.
Conventional approaches analyze individual melt pool images

and provide local porosity predictions [1,10,12,58]. Those
approaches cannot deal with all the challenges concerning layer-
wise modeling of thermal history. In the following sections, we
propose a method to reduce the dimensionality of thermal images.
Subsequently, layer-wise key process signatures are extracted
through spatiotemporal variation within and between images.
Finally, the classification model is built upon key process signatures
for anomaly detection.

3.2 Data Transformation. Each melt pool is captured by the
pyrometer camera as an image with a temperature reading at each
pixel location within the field of view. Usually, the large size of
these images (number of pixels) complicates processing without
proper data reduction. Most importantly, the heat affected zone
(HAZ) carries the main features of the melt pool and is usually con-
densed. Transforming the initial coordinate system and interpolating
the temperature response surface can both emphasize the informative
HAZ and reduce the data dimensionality (as shown in Fig. 5).
Converting the coordinate system from Cartesian to spherical

enables melt pools with different sizes, shapes, and locations to
have an identical support in the spherical domain [12]. Subse-
quently, incorporating a nonparametric surface interpolation (e.g.,
biharmonic model) allows the discrete data to be converted into
a continuous form. With a continuous response surface, a relatively
coarse grid of information can be extracted to effectively
decrease the image size. Therefore, the overall data dimensionality
decreases significantly. Considering the output of data transforma-
tion, each melt poolMj is an image (second-order tensor) with size
I1 × I2.

3.3 Feature Extraction With MPCA. MPCA is a method
developed to extract features of multidimensional data expressed
as tensors [62]. One alternative approach is reshaping the melt
pool images into large vectors (vectorization) and applying the tra-
ditional PCAmethod. However, vectorization causes computational
and memory issues. Moreover, vectorization breaks the natural

Fig. 2 Demonstration of the change in layer feature behavior
due to a change in the single melt pool feature where square
dot stands for a normal melt pool and triangle dot stands for
an abnormal melt pool

Fig. 3 Illustration of (a) corrupted image with no melt pool information and (b) melt pool with missing
temperature measurements (circled)
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correlation structure in the original melt pool images [62]. MPCA is
a dimensionality reduction algorithm that works directly on tensor
objects instead of vectors.
A set of N tensor objects {M1, M2, . . . , MN} is available for

training. Each tensor object Mj ∈ RI1×I2 accepts values from
tensor space RI1 ⊗ RI2 . The MPCA’s goal is to perform a
two-mode transformation to map the original tensor data into a low-
dimensional tensor subspace. The two-dimensional melt pool data
require two projection matrices {Ũ

(t) ∈ RIt×I ′t , t = 1, 2} to map
the melt pool images from the original tensor space RI1 ⊗ RI2

into a tensor subspace RI′1 ⊗ RI ′2 where I ′t < It . The transformation
equation is

M′
j =Mj ×1 Ũ

(1)T
×2 Ũ

(2)T
, j = 1, . . . , N

where M′
j ∈ RI ′1×I

′
2 captures most of the variation in the original

data. It is worth mentioning that the term PC mentioned in this
MPCA-based study refers to the entries within the projected low-
dimensional tensor M′

j, which is not exactly the same concept as
principal components extracted from traditional PCA.
To make sure the MPCA algorithm captures the major variability

in the healthy melt pools, it is critical to train the model only based
on the healthy melt pools to estimate the projection matrices. This is
under the well accepted premise that the healthy melt pools share a
similar thermal distribution.

3.4 Key Process Signatures of a Layer. It is desirable for a
key process signature to carry the most informative features to dis-
criminate healthy layers from unhealthy ones. In this section, two
novel layer-wise key process signatures are proposed based on
the low-dimensional subspace learned using the MPCA method.

3.4.1 Primary Feature: Volume of the Convex Hull. The first
key process signature is derived from the PCs resulted from
MPCA. This primary feature is proposed under the premise that
the thermal history of a healthy layer has a smaller variability,
and the main idea is to find a measure to capture the dispersion of
the PCs of all melt pools within one layer. Being unhealthy

Fig. 4 An illustration of different number of melt pools within
each layer when fabricating a 60-layer thin wall

Fig. 5 Illustration of data transformation where (a) is the initial high dimensional data and (b) is
the low-dimensional extracted grid with emphasis on heat affected zone
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causes at least one melt pool to have a major difference in PCs com-
pared to the healthy ones which leads to a more scattered distribu-
tion (as shown in Fig. 6).
To capture the dispersion, one reasonable approach is building a

convex hull using the PCs of all the melt pools observed in one
layer. Although, other geometries, such as minimal bounding
sphere, can also be utilized to enclose the points and characterize
the dispersion, convex hull builds a unique free form shape enclos-
ing all data points, and it is also highly sensitive to the outliers in the
enclosed data points. Two theorems below demonstrate the advan-
tages of using the convex hull over the minimal bounding sphere.
Before proving the theorems, formal definitions of the convex
hull and the minimal bounding sphere are provided.
DEFINITION 1. Convex hull: The convex hull of a finite point set C

is the intersection of all convex supersets containing C. Given that
C contains n points c1, c2, …, cn, the convex set of C is represented
as conv(C) =

∑n
i=1 λici|ci ∈ C, λi ≥ 0,

∑n
i=1 λi = 1

{ }
[63].

DEFINITION 2 (Minimal bounding sphere). The smallest bounding
sphere ω(C ) is the hypersphere with the smallest radius which
encloses a given point set C in its interior or on its boundary;
i.e., ‖ci − O‖ ≤ R ∀ i ∈ 1, . . . , n, where O and R represent the
center and the radius of ω(C), respectively.
THEOREM 1 (Sensitivity). Adding a new point x* to set C such that

x* ∉ conv(C), the convex hull will definitely get enlarged. On the
other hand, its smallest bounding sphere may not always change.
Proof. If ∃λ*i :x* =

∑n
i=1 λ

*
i ci, λ*i ≥ 0,

∑n
i=1 λ

*
i = 1, then x* ∈

conv(C) and conv(C ∪ {x*}) = conv(C). Additionally, for the
bounding sphere, ‖x* −O‖= ∑n

i=1 λ
*
i (ci −O)

∥∥ ∥∥≤∑n
i=1 λ

*
i ‖ci −O‖

≤∑n
i=1 λ

*
i R=R, thus ω(C ∪ {x*})=ω(C). If ∃6 λ∗i : x∗ =

∑n
i=1

λ∗i ci, λ
∗
i ≥ 0, and

∑n
i=1 λ

∗
i = 1, we need to add x* to the basis

of the convex combinations which updates the supersets and
extends the convex hull to conv(C ∪ {x*})= {

∑n
i=1 λici + λn+1x*

|ci ∈C, λi ≥ 0,
∑n+1

i=1 λi = 1}⊃ conv(C). Moreover, regarding the
bounding sphere, ∃x* such that x* ∉ conv(C) and‖x* −O‖ ≤ R,
ω(C ∪ {x*})=ω(C); and if ‖x* −O‖>R, the radius R needs to be
enlarged to enclose x*, i.e., ω(C ∪ {x*})⊃ω(C). ▪
THEOREM 2 (Conditional uniqueness). Each point set has its own

unique convex hull provided a fixed set of extreme points.
Proof. Suppose we have one set of n points C. Assume that two dif-
ferent points x*1 ≠ x*2 are added separately to set C where

∃6 λ∗i : x∗1 =
∑n

i=1

λ∗i ci, λ∗i ≥ 0, and
∑n

i=1

λ∗i = 1

∃6 λ∗i : x∗2 =
∑n

i=1

λ∗i ci, λ∗i ≥ 0, and
∑n

i=1

λ∗i = 1

which means both points are extreme points, and according to The-
orem 1, adding either of them to set C will enlarge the convex hull

into a new one where conv(C ∪ {x*1}) ≠ conv(C ∪ {x*2}). On the
other hand, if ‖x*1 − O‖ ≤ R and ‖x*2 − O‖ ≤ R, the boundary
sphere stays the same even though new extreme points have been
added to the set, i.e., ω(C ∪ {x*1}) = ω(C ∪ {x*2}) = ω(C). In
summary, while convex hulls of two different sets are different,
their corresponding minimal boundary spheres can be identical. ▪
Volume of the convex hull measures the dispersion of the points

in the high dimensional space. The more dispersion within data
points, the larger volume of the convex hull. The algorithm on
how to calculate the volume of a high dimensional convex hull is
provided in Ref. [64].

3.4.2 Secondary Feature: Maximum Norm of Residuals.
Although the convex hull is an effective measure for layer-wise
thermal characteristics, the extracted PCs may not capture all the
variation in the original data. Additionally, a valuable portion of
information may get lost during projection from a higher dimen-
sional tensor to a lower dimensional one. This is the reason why
another signature feature should be introduced to account for the
part not considered in the primary feature.
Each melt pool after projection loses a portion of data, whose

amount differs from one melt pool to another. Backward projection
of each melt pool using the projection matrices Ũ

(t)
will create a

tensor with the same dimension as the original tensor. Subtracting
these two tensors generates the residual tensor. Backward projection
is performed as follows:

M′′
j =M′

j ×1 Ũ
(1)

×2 Ũ
(2)
, j = 1, . . . , N

where M′′
j accepts value from tensor space RI1 ⊗ RI2 , same as its

initial tensor Mj. Therefore, the residual tensor is R =Mj −M′′
j .

One way to represent this residual tensor is through the L1 norm.
Since the MPCA model is trained based on healthy melt pools, it
is expected that projecting unhealthy melt pools results in either sig-
nificantly different PC values or significantly larger residuals com-
pared to the healthy ones. Choosing the maximum norm of residuals
inside a layer is one effective way of capturing anomalies. If there
exists at least one unhealthy melt pool inside a layer, it causes the
maximum norm of residuals to increase remarkably (as shown in
Fig. 7). This is similar to the idea of group control chart in statistical
quality control [65].

3.5 Classification: Correlating Layer Signatures to
Structural Quality. After defining the signature features (i.e.,
the convex hull volume and the norm of residuals), the classification
model can be trained. The goal of the classifier is to draw a bound-
ary between healthy layers and unhealthy layers, which can be used
to predict the labels of newly observed layers. As mentioned before,
if one layer contains at least one porosity, it is labeled as unhealthy
(as shown in Fig. 8). The classifier’s input includes one vector of
response labels (0 if healthy, 1 if unhealthy) and a matrix of two pre-
dictors: the convex hull volume and the maximum norm of
residuals.
Numerous supervised learning algorithms can be applied to the

extracted features for layer-wise quality prediction. In this paper,
support vector machine (SVM) is selected as it is one of the most
powerful supervised machine learning techniques [66]. Detailed
discussion on SVM can be found in [67].
The objective of SVMmethods is to find a hyperplane so that the

distance from the hyperplane to the nearest data point on each side
is maximized. In many real-world problems, instances of different
classes are not linearly separable. One solution is mapping data
into higher dimensional space where we can define a new separating
hyperplane. Kernel functions are a class of special functions which
make this mapping possible through defining inner products
directly in the feature space.
In this study, the Gaussian class of kernels is selected due to

the high flexibility this type of kernel functions can provide com-
paring to their linear counterparts. Using Gaussian kernels

Fig. 6 Illustration of the primary layer-wise key signature.
Examples of (a) a healthy layer and (b) an unhealthy layer
based on the first two PCs extracted from MPCA.
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requires selection of the scale parameter (variance). In general, a
lower variance provides more flexibility when used in SVM
classification.
If there are p predictors, low-variance Gaussian kernel function

(variance = (
��
p

√
/4)) makes finely detailed distinctions between

classes (at the cost of overfitting in some cases); medium-variance
Gaussian kernel function (variance = (

��
p

√
)) has lower flexibility

than low-variance Gaussian and prevents overfitting issue; high-
variance Gaussian kernel function (variance = (4 ×

��
p

√
)) makes

coarse distinction between the data classes. Medium-variance
Gaussian is the suitable choice of classification in this study
where low-variance Gaussian has the risk of overfitting and the
high-variance Gaussian has the risk of low capacity, as illustrated
in Fig. 9.

3.6 Hyperparameter Tuning. The number of PCs chosen to
form a convex hull for each layer affects the output of prediction.
The number of PCs is regarded as a hyperparameter of the model
and the best way to determine its value is cross validation.
At each testing iteration (Secs. 4.4 and 4.5), all the layers are

divided into two mutually exclusive subsets, training and testing
sets. Within training set, a k-fold cross validation is performed,
and the performance of the model is evaluated using different
numbers of PCs (dimension of convex hull). This procedure is illus-
trated in Fig. 10. The value of k depends on the size of the training
set which is determined in both of the following sections. In case of
multiple dimensions (number of PCs) with maximum F-score, the
median of the set is selected.
The performance of the classification model can be evaluated

using three measures, namely, precision, recall, and F-score.

Those measures can be calculated using the formulas as follows:

Recall =
True positive

True positive + false negative

Precision =
True positive

True positive + false positive

where true and false terms refer to correct and incorrect predictions,
respectively. Positive and negative terms refer to the predicted
classes of unhealthy and healthy layers. For example, true positive
is defined as the number of unhealthy layers that are accurately clas-
sified as unhealthy. F-score is the harmonic mean of precision and
recall.

F − score = 2 ×
precision × recall
precision + recall

4 Case Study
The performance of the proposed methodology is examined

using a direct laser deposition process which fabricates a thin
wall using Ti-6AL-4V. During the build of this thin wall, a pyrom-
eter camera captures the thermal images of melt pools at different
locations of the thin wall. After the fabrication, XCT scans are
used to characterize the layer-wise porosity structure inside the
build.

4.1 Experimental Setup. The experimental setup consists of a
LENS 750 machine equipped with thermal imaging camera, one
co-axial pyrometer camera to capture melt pools (Stratonics, Inc.),
and one infrared camera to capture the global heat flow

Fig. 7 Demonstration of the norm of residuals for melt pools of
two layers. Patterned bars are the norms for melt pools of the
unhealthy layer where solid bars are for the healthy layer.
There is only one defected melt pool in the defected layer
which demonstrates the maximum norm of residuals.

Fig. 8 The illustration of the part of an unhealthy layer which
includes pores

Fig. 9 Comparison of three different kernel variations of Gauss-
ian family

Fig. 10 General overview of parameter selection using cross
validation
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(Sierra-Olympic Technologies, Inc. Viento320). The pyrometer
camera mentioned in this study is referring to the melt pool
sensor which provides precise temperature measurements by
means of two-wavelength (λ) pyrometry technology.1

In this study, melt pool images captured by the pyrometer camera
are used to build the prediction model. The pyrometer camera char-
acteristics are as follows:

• Exposure time: 2.0274 ms (reduces the risk of motion blur)
• CMOS detector with array size 752 × 480 and pixel pitch

6.45 µm
• Captured temperature range: 1000–2500 °C
• Pixel clock: 5 MHz
• Nominal image collection rate: 6.4 Hz

The powder used is titanium alloy Ti-6AL-4V. Table 1 summa-
rizes the initial process parameters used to fabricate the thin
walls with height 27.56 mm, length 47.81 mm, and thickness
1.78 mm [68].
After the fabrication, the parts are scanned with a high-resolution

(1 µm precision) XCT scan machine to detect anomalies. For a
high-quality scan, Al+Cu filter is used to block out low-energy
rays. Part is rotated inside the chamber (0.5 deg in each step), and
in each step it is exposed to X-ray beams for 1400 ms to capture
the image. More information about the XCT scanning process can
be found in [69].

4.2 Dataset Description. The thin wall includes 60 layers
where each layer contains several melt pools in a temporal order.
Based on the XCT results, 26 layers include at least one pore.
These 60 layers of data are divided into two sets, the first part of
data is used to train the model and second part is used to test the per-
formance of the proposed method. Before dividing data into train-
ing and testing sets, all thermal images with size 752 × 480 are
cropped to images with size 130 × 130, the universal region
which carries the important information about the melt pool. After-
wards, these images are transformed into spherical coordinates and
interpolated with a biharmonic model. The interpolation model is
used to extract a lower dimensional grid of data, and thus, each
image with size 130 × 130 is transformed into a new grid with
size 27 × 32. After data transformation, MPCA is applied for dimen-
sion reduction, and key signature features are extracted based on the
extracted PCs.

4.3 Benchmark Method. In this section, a traditional scheme
is demonstrated which combines Hotelling’s T2 statistics and their
variability within one layer to detect unhealthy layers. It is worth
mentioning that the numbers of melt pools differ among different
layers, and therefore, traditional statistics (like Hotelling’s T2)
cannot be directly applied to the layer-wise data. Some additional
steps need to be taken to account for the different numbers of
melt pools within different layers. One way is to calculate a
single Hotelling’s T2 statistic based on each individual melt pool
and then use a traditional quantification, the variance of all the T2

statistics observed from one layer, to characterize the layer-wise
dispersion.
After applying the MPCA algorithm for dimension reduction,

Hotelling’s T2 statistics can be calculated for each individual melt
pool using the equation as follows:

χ20 = (x − μ)′Σ−1(x − μ)

where x is a p× 1 vector of the extracted PCs, μ is the mean vector of
PCs, and Σ is its covariance matrix. With the statistics of each melt
pool, the variability within each layer is calculated. It is expected
that the layers with higher variance contain at least one porosity.
Similar to the proposed methodology, the mean μ and covariance

matrix Σ of the extracted PCs are estimated using the training set.

The variance feature extracted from Hotelling’s T2 replaces the
convex hull-based feature to quantify the dispersion within each
layer, and the classifier is trained based on the maximum norm of
residuals and the variance of the T2 statistics within one layer.
For a fair comparison, the same cross-validation procedure is

applied for both the proposed methodology and the benchmark
method. The selection procedure of the number of PCs are identical
for both methods with one exception, where Hotelling’s T2 can use
all the available PCs to train the covariance matrix.

4.4 Leave-One-Out Cross Validation. Leave-one-out is an
N-fold cross validation where N represents the number of
samples. Training set consists of N− 1 layers where a six-fold
cross validation is used to determine the number of PCs. The con-
fusion matrix after applying both models to the 60 layers is shown
in Table 2. Additionally, the histogram shown in Fig. 11 demon-
strates the frequency of the number of PCs used in the proposed
and benchmark methods within all steps of leave-one-out cross
validation.
Comparing the results shown in Table 2, the proposed methodol-

ogy has significantly better performance especially for predicting
the unhealthy layers. The benchmark method has lower accuracy
in terms of all the quality measures.
As is shown in Table 2, there are two unhealthy layers that are

misclassified as healthy (i.e., two false negatives) and one healthy
layer (i.e., one false positive) that is classified as unhealthy.
Those false negatives, though identified as unhealthy from XCT
scans, demonstrate normal thermal behavior based on the observed
thermal history. This may be due to the missing melt pool images
within those layers because of either the limited sampling rate or
the corrupted image data. The false positive behaves as unhealthy
which may be due to corrupted images collected by the thermal
camera during the fabrication process.

4.5 Monte-Carlo Cross Validation. Repeated random sub-
sampling validation, also known as Monte-Carlo cross validation,
randomly splits dataset into training and testing sets [70]. Training
and testing sets are randomly assigned with 50 and 10 layers,
respectively. Within the training set, a six-fold cross validation is
performed to determine the number of PCs leading to a better clas-
sification performance. Finally, the performance of both models is
tested based on the testing set.
This random selection is performed 500 times and all the three

measures are calculated for each iteration. In each iteration, misclas-
sified layers, if any, are removed from training set until all the layers
are classified correctly. The histogram of the number of PCs chosen
in each iteration is shown in Fig. 12. The mean and standard devia-
tion (SD) values for the recall, precision, and F-score for both
methods are shown in Table 3.
According to Table 3, proposed methodology significantly out-

performs the benchmark method with respect to all the quality mea-
sures. Therefore, the convex hull-based approach defines a more
reliable quality feature concerning the anomalies detection within
layers compared to the Hotelling’s T2 approach.
The output of one iteration of the proposed methodology is

illustrated in Fig. 13 as an example where there are five healthy
and five unhealthy layers in the testing set. Nine out of ten layers
are classified correctly and only one unhealthy layer is misclassified
as healthy. The classification model uses the medium-variance

Table 1 Illustration of process parameters used for the
fabrication of thin wall

Laser power 290 W Scan speed 12.70 mm/s
Powder feed rate 0.32 g/s Hatch spacing 0.508 mm
Substrate
thickness

3.3 mm Starting offset from
substrate

6.7 mm

Layer thickness 0.508 mm Nozzle diameter 1.016 mm

1http://stratonics.com/systems/sensors/
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Gaussian kernel function to classify the layers, which is shown with
black line in Fig. 13. The bottom-left region of the line is classified
as healthy.

5 Conclusion
The main challenge in the additive manufacturing process is its

lack of repeatability, leading to quality issues such as internal
porosity, minicracks, and lack of fusion in the build. These

issues are the main barrier for broader industrial adoption of AM
technologies in the demanding industries. A wide variety of
approaches in the literature are focused on characterizing the
defects by modeling the thermomechanical relationship, i.e.,
FEMs, which suffer from limitations such as low computational
efficiency, high geometric dependence, and nonrobustness to
process uncertainty. Data-driven approaches can address these lim-
itations by characterizing the defects based on features extracted
from observed thermal history. However, existing data-driven

Table 2 Confusion matrix for the leave-one-out cross validation

Proposed method Benchmark method

Predicted Predicted

Healthy Unhealthy Healthy Unhealthy

Actual Healthy 33 (97%) 1 (3%) Actual Healthy 33 (97%) 1 (3%)
Unhealthy 2 (8%) 24 (92%) Unhealthy 5 (19%) 21 (81%)

Classification Accuracy
Recall Precision F-Score Recall Precision F-Score
0.92 0.96 0.94 0.81 0.95 0.87

Fig. 11 Illustration of the frequency of selected number of PCs in leave-one-out cross validation: (a) proposed and
(b) benchmark methodology

Fig. 12 Illustration of the frequency of selected number of PCs in Monte-Carlo cross validation: (a) proposed and
(b) benchmark methodology
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methods provide porosity prediction based on individual melt pool
images only, which cannot be directly used for layer-wise quality
prediction and process control.
In this paper, a novel online layer-wise quality prediction meth-

odology is proposed. First, the data-driven transformation tech-
niques are used to reduce the dimension of images, which brings
the images into an identical support and focuses on HAZ; subse-
quently, two novel layer-wise process signatures are derived
based on the tensor decomposition of melt pool images of the
entire layer using MPCA. The SVM classifier is used for real-time
layer-wise quality prediction based on the proposed key signatures.
The performance of the proposed methodology is validated
through two cross-validation techniques and is compared with a
benchmark method which combines traditional statistical
approaches. The proposed method can serve as a solid foundation
for in situ process control/correction actions for AM quality
improvement.
A couple of interesting topics still remain open for future

research. First, the proposed method does not account for the pos-
sible interactions between adjacent layers/tracks. One of the impor-
tant between-layer interactions is the remelting effect which refers
to a phenomenon where the heat generated when depositing a
new layer may remelt the recently deposited layers/tracks and
potentially correct the porosity formed in previous layers. Second,
the performance of the proposed method needs further investigation
when it is applied to complicated geometry fabrication. Last but not
the least, layer-wise process control algorithms are needed to work
together with the monitoring scheme to adjust the process parame-
ters for quality improvement.

6 Note to Practitioners
In this section, a step-by-step procedure is summarized to guide

the practitioners on how the proposed methodology can be used for
in situ layer-wise quality prediction. All the computations in this
paper are implemented using MATLAB, and all the codes are available
upon request. The experimental setup needed includes a co-axial
dual wavelength pyrometer camera for in situ data collection and

an XCT system for off-line validation. Prior to the data collection,
the sensor systems need to be properly calibrated.

Step 1: Data collection
Given the process parameters specified in the design, a number

of training samples are fabricated. The required sample size for
training is determined by the process variability and measure-
ment system capability. Subsequently, all the samples need to
go through a postmanufacturing inspection process using the
XCT machine. All the available training samples can be
divided into two portions with 80% for model training and
20% for validation.
Step 2: Data preprocessing

Melt pool images need to be labeled with their corresponding
coordinates in the final build based on the g-codes used during
the fabrication. The porosity locations obtained from the XCT
scanning should be matched with the derived melt pool locations
to label the melt pool images as healthy or unhealthy. In addition,
the corrupted images with no melt pool observed need to be
removed from the thermal history.
Step 3: Data transformation

Each melt pool image should be cropped using the same crop-
ping parameters to make sure all the melt pools can be included
by the cropped images. Subsequently, spherical transformation
and biharmonic surface interpolation are implemented to
further reduce the dimension of the melt pool images.
Step 4: Model training

Step 4.1:MPCA. Using the training set, multilinear principal
components analysis is applied to reduce the dimension
and extract the relevant features as a low-dimensional
tensor (core tensor). The entries in the core tensor are
the extracted PCs used to construct the layer-wise fea-
tures for quality prediction, and the projection matrices
are obtained for future dimension reduction.

Step 4.2: Layer-wise feature extraction. The primary feature
(volume of convex hull) should be calculated based on
different possible numbers of PCs used, and the second-
ary feature (maximum norm of residuals) can also be
calculated.

Step 5: Model selection
Using the validation set, the number of PCs with the best clas-

sification performance can be selected as the parameter to use for
future in situ prediction. In addition, the corresponding SVM
classifier using the selected optimal parameter can be obtained.
Step 6: In situ layer-wise prediction for new data

Step 6.1: For each newly fabricated part, the melt pool
images of each layer can be collected during the build
and analyzed by following the same procedure in
Steps 2 and 3.

Step 6.2:MPCA-based dimension reduction can be achieved
using the projection matrices estimated in Step 4.1.

Step 6.3: Based on the selected optimal number of PCs found
in Step 5, the primary and secondary features can be
calculated.

Step 6.4: Based on the extracted layer-wise features, the
SVM classifier trained in Step 5 can be used for
anomaly detection for each layer.

Acknowledgment
Research was sponsored by the Army Research Laboratory

and was accomplished under Cooperative Agreement Number

Table 3 Summary of mean quality measures with their SD in parentheses

Recall Precision F-score

Proposed 0.8930 (0.1525) 0.9617 (0.0930) 0.9165 (0.1083)
Benchmark 0.8495 (0.1711) 0.9285 (0.1441) 0.8750 (0.1257)

Fig. 13 Illustration of one iteration of Monte-Carlo cross
validation

081013-10 / Vol. 141, AUGUST 2019 Transactions of the ASME

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 06/22/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



W911NF-15-2-0025 (Funder ID: 10.13039/100006754). The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwithstand-
ing any copyright notation herein.

References
[1] Grasso, M., and Colosimo, B. M., 2017, “Process Defects and In Situ Monitoring

Methods in Metal Powder Bed Fusion: A Review,” Meas. Sci. Technol., 28(4),
p. 044005.

[2] NIST, 2013, Measurement Science Roadmap for Metal-Based Additive
Manufacturing, National Institute of Standards and Technology, U.S.
Department of Commerce, Energetics Incorporated, Columbia, MD.

[3] America Makes, 2017, “Standardization Roadmap for Additive Manufacturing,”
ANSI.

[4] Matsumoto, M., Shiomi, M., Osakada, K., and Abe, F., 2002, “Finite Element
Analysis of Single Layer Forming on Metallic Powder Bed in Rapid
Prototyping by Selective Laser Processing,” Int. J. Mach. Tools Manuf., 42(1),
pp. 61–67.

[5] Kolossov, S., Boillat, E., Glardon, R., Fischer, P., and Locher, M., 2004, “3D FE
Simulation for Temperature Evolution in the Selective Laser Sintering Process,”
Int. J. Mach. Tools Manuf., 44(2–3), pp. 117–123.

[6] Crespo, A., Deus, A. M., and Vilar, R., 2006, “Finite Element Analysis of Laser
Powder Deposition of Titanium,” Proceedings of ICALEO, Scottsdale, AZ, 2005,
pp. 1016–1021.

[7] Martukanitz, R., Michaleris, P., Palmer, T., DebRoy, T., Liu, Z.-K., Otis, R., Heo,
T. W., and Chen, L.-Q., 2014, “Toward an Integrated Computational System for
Describing the Additive Manufacturing Process for Metallic Materials,” Addit.
Manuf., 1–4, pp. 52–63.

[8] Hu, D., and Kovacevic, R., 2003, “Sensing, Modeling and Control for
Laser-Based Additive Manufacturing,” Int. J. Mach. Tools Manuf., 43(1),
pp. 51–60.

[9] Chen, T., and Zhang, Y., 2004, “Numerical Simulation of Two-Dimensional
Melting and Resolidification of a Two-Component Metal Powder Layer in
Selective Laser Sintering Process,” Numer. Heat Trans. A Appl., 46(7),
pp. 633–649.

[10] Grasso, M., Laguzza, V., Semeraro, Q., and Colosimo, B. M., 2016, “In-Process
Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image
Data Analysis,” ASME J. Manuf. Sci. Eng., 139(5), p. 051001.

[11] Grasso, M., Demir, A. G., Previtali, B., and Colosimo, B. M., 2018, “In Situ
Monitoring of Selective Laser Melting of Zinc Powder Via Infrared Imaging of
the Process Plume,” Robot. Comput. Integr. Manuf., 49, pp. 229–239.

[12] Khanzadeh, M., Chowdhury, S., Tschopp, M. A., Doude, H. R., Marufuzzaman,
M., and Bian, L., 2018, “In-Situ Monitoring of Melt Pool Images for Porosity
Prediction in Directed Energy Deposition Processes,” IISE Trans. 51(5), pp. 1–19.

[13] Liu, J., Liu, C., Bai, Y., Rao, P., Williams, C., and Kong, Z., 2018, “Layer-Wise
Spatial Modeling of Porosity in Additive Manufacturing,” IISE Trans., 51(2),
pp. 109–123.

[14] Sharratt, B. M., 2015, “Non-Destructive Techniques and Technologies for
Qualification of Additive Manufactured Parts and Processes,” Defence
Research Reports.

[15] Montazeri, M., Yavari, R., Rao, P., and Boulware, P., 2018, “In-Process
Monitoring of Material Cross-Contamination Defects in Laser Powder Bed
Fusion,” ASME J. Manuf. Sci. Eng., 140(11), p. 111001.

[16] Imani, F., Gaikwad, A., Montazeri, M., Rao, P., Yang, H., and Reutzel, E., 2018,
“Process Mapping and In-Process Monitoring of Porosity in Laser Powder Bed
Fusion Using Layerwise Optical Imaging,” ASME J. Manuf. Sci. Eng.,
140(10), p. 101009.

[17] Montazeri, M., and Rao, P., 2018, “Sensor-Based Build Condition Monitoring in
Laser Powder Bed Fusion Additive Manufacturing Process Using a Spectral
Graph Theoretic Approach,” ASME J. Manuf. Sci. Eng., 140(9), p. 091002.

[18] Yao, B., Imani, F., Sakpal, A. S., Reutzel, E. W., and Yang, H., 2018,
“Multifractal Analysis of Image Profiles for the Characterization and Detection
of Defects in Additive Manufacturing,” ASME J. Manuf. Sci. Eng., 140(3),
p. 031014.

[19] Plott, J., Tian, X., and Shih, A., 2018, “Measurement and Modeling of Forces in
Extrusion-Based Additive Manufacturing of Flexible Silicone Elastomer With
Thin Wall Structures,” ASME J. Manuf. Sci. Eng., 140(9), p. 091009.

[20] Corbin, D. J., Nassar, A. R., Reutzel, E. W., Beese, A. M., and Michaleris, P.,
2018, “Effect of Substrate Thickness and Preheating on the Distortion of Laser
Deposited Ti–6Al–4V,” ASME J. Manuf. Sci. Eng., 140(6), p. 061009.

[21] Khanzadeh, M., Rao, P., Jafari-Marandi, R., Smith, B. K., Tschopp, M. A., and
Bian, L., 2017, “Quantifying Geometric Accuracy With Unsupervised Machine
Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive
Manufacturing Parts,” ASME J. Manuf. Sci. Eng., 140(3), p. 031011.

[22] Samie Tootooni, M., Dsouza, A., Donovan, R., Rao, P. K., (James) Kong, Z., and
Borgesen, P., 2017, “Classifying the Dimensional Variation in Additive
Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data
Using Machine Learning Approaches,” ASME J. Manuf. Sci. Eng., 139(9),
p. 091005.

[23] Chowdhury, S., Mhapsekar, K., and Anand, S., 2017, “Part Build
Orientation Optimization and Neural Network-Based Geometry Compensation
for Additive Manufacturing Process,” ASME J. Manuf. Sci. Eng., 140(3),
p. 031009.

[24] Brika, S. E., Zhao, Y. F., Brochu, M., and Mezzetta, J., 2017, “Multi-Objective
Build Orientation Optimization for Powder Bed Fusion by Laser,” ASME
J. Manuf. Sci. Eng., 139(11), p. 111011.

[25] Aboutaleb, A. M., Tschopp, M. A., Rao, P. K., and Bian, L., 2017,
“Multi-Objective Accelerated Process Optimization of Part Geometric
Accuracy in Additive Manufacturing,” ASME J. Manuf. Sci. Eng., 139(10),
p. 101001.

[26] Yan, J., Battiato, I., and Fadel, G. M., 2017, “A Mathematical Model-Based
Optimization Method for Direct Metal Deposition of Multimaterials,” ASME
J. Manuf. Sci. Eng., 139(8), p. 081011.

[27] Garnier, V., Piwakowski, B., Abraham, O., Villain, G., Payan, C., and Chaix,
J. F., 2013, “Acoustic Techniques for Concrete Evaluation: Improve-
ments, Comparisons and Consistency,” Construct. Build. Mater., 43, pp. 598–
613.

[28] Soltani, F., Goueygou, M., Lafhaj, Z., and Piwakowski, B., 2013,
“Relationship Between Ultrasonic Rayleigh Wave Propagation and Capillary
Porosity in Cement Paste With Variable Water Content,” NDT E Int., 54,
pp. 75–83.

[29] Cai, X., Malcolm, A. A., Wong, B. S., and Fan, Z., 2015, “Measurement and
Characterization of Porosity in Aluminium Selective Laser Melting Parts Using
X-Ray CT,” Virtual Phys. Prototyp., 10(4), pp. 195–206.

[30] Gibson, I., Rosen, D., and Stucker, B., 2015, “Directed Energy Deposition
Processes,” Additive Manufacturing Technologies, I. Gibson, ed., Springer,
New York, NY, pp. 245–268.

[31] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., and Hui, D., 2018,
“Additive Manufacturing (3D Printing): A Review of Materials, Methods,
Applications and Challenges,” Compos. B: Eng., 143, pp. 172–196.

[32] Thompson, S. M., Bian, L., Shamsaei, N., and Yadollahi, A., 2015,
“An Overview of Direct Laser Deposition for Additive Manufacturing; Part
I: Transport Phenomena, Modeling and Diagnostics,” Addit. Manuf., 8, pp.
36–62.

[33] Costa, L., Reti, T., Deus, A., and Vilar, R., 2002, “Simulation of Layer Overlap
Tempering Kinetics in Steel Parts Deposited by Laser Cladding,” Proceedings of
International Conference on Metal Powder Deposition for Rapid Manufacturing,
Princeton, NJ, April, MPIF, pp. 172–176.

[34] Costa, L., Vilar, R., Reti, T., and Deus, A. M., 2005, “Rapid Tooling by Laser
Powder Deposition: Process Simulation Using Finite Element Analysis,” Acta
Mater., 53(14), pp. 3987–3999.

[35] Antony, K., Arivazhagan, N., and Senthilkumaran, K., 2014, “Numerical and
Experimental Investigations on Laser Melting of Stainless Steel 316L Metal
Powders,” J. Manuf. Process., 16(3), pp. 345–355.

[36] Foroozmehr, A., Badrossamay, M., Foroozmehr, E., and Golabi, S., 2016,
“Finite Element Simulation of Selective Laser Melting Process Considering
Optical Penetration Depth of Laser in Powder Bed,” Mater. Des., 89,
pp. 255–263.

[37] Andreotta, R., Ladani, L., and Brindley, W., 2017, “Finite Element Simulation of
Laser Additive Melting and Solidification of Inconel 718 With Experimentally
Tested Thermal Properties,” Finite Elements Anal. Des., 135, pp. 36–43.

[38] Denlinger, E. R., Jagdale, V., Srinivasan, G. V., El-Wardany, T., and Michaleris,
P., 2016, “Thermal Modeling of Inconel 718 Processed With Powder Bed Fusion
and Experimental Validation Using In Situ Measurements,” Addit. Manuf., 11,
pp. 7–15.

[39] Riedlbauer, D., Scharowsky, T., Singer, R. F., Steinmann, P., Körner, C., and
Mergheim, J., 2017, “Macroscopic Simulation and Experimental Measurement
of Melt Pool Characteristics in Selective Electron Beam Melting of
Ti-6Al-4V,” Int. J. Adv. Manuf. Technol., 88(5–8), pp. 1309–1317.

[40] Roy, S., Juha, M., Shephard, M. S., and Maniatty, A. M., 2018, “Heat Transfer
Model and Finite Element Formulation for Simulation of Selective Laser
Melting,” Comput. Mech., 62(3), pp. 273–284.

[41] Pitassi, D., Savoia, E., Fontanari, V., Molinari, A., Luchin, V., Zappini, G., and
Benedetti, M., 2018, “Finite Element Thermal Analysis of Metal
Parts Additively Manufactured Via Selective Laser Melting,” Finite Element
Method—Simulation, Numerical Analysis and Solution Techniques, P. Răzvan,
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